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Abstract. Thispapersolidifiesthefoundationsfor a singletontheoryoflighi, first
proposedtwo yearsago. This theoryis basedon apuregaugecouplingofthescala.r
singletonfield to theelectromagneticcurrent. Like quarks,singletonsareessentially
unobservable. Thefield operatorsarenot local observable-sandthereforeneednot
commutefor spacelikeseparation.Thisopensuppossibilitiesfor generalizedstatis-
tics, just as is the casefor quarks. It then turnsout thatapuregaugecoupling, in
which t9~(x) couplesto theconser.’edcurrent J

14( z) , generatesrealinteractions—

theeffectivetheoryispreciselyordinaryelectrodynamicsin deSitterspace.Here we
improveour theoryandexplain it in muchmoredetailthan before,addingtwo new
results. (1) Theconceptofnormalorderingin atheorywith unconventionalstatistics
is workedout in detail. (2) Wehavediscoveredthenatural way ofincluding both
photonhelicities. Quantization,it maybenoted, isa studyinrepresentationtheoryof
certain infinite-dimensional,ni/potentLie algebras,of which theHeisenbergalgebra
is the-prototype.

INTRODUCTION

Someof thecuriousfeaturesof singletonkinematicswerepointedoutlong ago[1,2].
Briefly, theextremepaucityof statesis a strongindicationof the impossibilityofdirect
observationofone-singletonstates.Not lessremarkableis thefactthatall two-singleton

statesare massless.On this purelykinematicalbasiswe pointedout, in 1978,that all
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masslessparticlescanbe interpretedasbeingcomposedof two singletons. (This idea,
a revivalof theold neutrinotheoryof light,hasrecentlybeenfoundto fit in verynicely

with thedevelopmentof supermembranes[3]).
Soonafterwards,we tookthe first stepstowardsthedevelopmentof a singletonquan-

tum field theory,with thediscovery[4] of a full fledgedgaugetheoryof a new kind, in
whichno vectorfields but only scalarand spinor fields are involved. The suggestion
of non-observabilityalludedto aboveis henceforthstrongly reinforcedby therequire-
ment of unitarity. Indeed,this field theoryis unitary onlyif all interactionsaregauge

invariant; and by a gaugetransformationthefieldscanbe transformedto zero in every
compactregionof de Sitter space.(Later,whensingletonsshowedup in higherdimen-

sionalsupergravities[5] they did, in fact, turn out to satisfy this condition).
This situationseemedat first to leada deadend, for two reasons.First, thenewly

discoveredgaugeinvarianceseemedto prohibitlocal interactions(only interactionsat

infinity wereallowed). Secondly,the compositeobjects did not obey Bose-Einstein

statistics,evenapproximately.This is a problem,thoughoftenoverlooked,in all com-
positetheories,but it is especiallyacutewhen, as in our case,thebindingenergyvan-
ishes. We hadassumed,of course,that the singletonsthemselvesobeyconventional
quantumstatistics.Thisimpasselasteduntil 1986.

Thekeytoasolutionof bothproblemsisto realizethatobjectsthatcannotbeobserved

locally (singletons,preons,and quarks)haveno dutyto obey the usualstatistics,since

theirfields neednotcommuteatspacelikedistances.Wenoticedthat theallegedtriviality
of an interactionoftheform

(1.1) fJP(z)~~~(z)dx,

in which 5 is aconservedcurrentand ~ isascalarfield, canbeprovedonlyif thenormal

orderedcommutatorof ~(x) with ~ x) is assumedto vanish— as is thecasewith
theBose-Einsteinquantizationrules.Indeed,theeffectiveinteractiongeneratedby (1.1)
is

f j~(z) : [~(z),ô~(z)]:

Sowhatwasneededwas aquantizationschemein whichthis vectorfield is different
from zero. We shallenterinto the detailslater, for onepurposeof thispaperis to make

up for the inadequaciesof our brief Letter[6]. Themainpoint, however,is that QED
wasreformulatedassingletonfield theory,photonsbeingidentifiedwith (antisymmetric)

statesoftwo singletons,and the full dynamicsof photonsandelectronsbeinggenerated
by theinteraction(1.1) betweenelectronsandsingletons.

The new insight that is offeredhere concernsmainly threepoints: clarificationand
completionof thequantumrules(the propertiesof normal ordering,especially),the in-
clusioninto the theoryof two helicities,asrequiredby conformalinvariance(in deSitter
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spacethereis a versionof QED that containsonly onephotonhelicity; this versionis
notconformally invariant),andthepossibilityof CP violation.

Thestructureof the S-matrix is understoodmodulo the possibilityof anomalies.

Anomaliesare by no meansto beconsideredas a nuisance,for the theoryembodiesa
latent CP violation thatneedsonly ananomalyto makeit real. (Lastsection).

Elsewhere[7], wehavediscussedquantization,includingthenewtype of quantum

field theorythat is thesubjectof the presentpaper,from thepointof view of the rep-
resentationtheoryof infinite dimensional,nilpotentLie algebras.Thosethat appearin
physicshavea complexstructurethat leadsnaturallyto conceptof highestweightrep-

resentations,orgeneralizedFockspacerepresentations,thatcanbefully classified.
Webelievethat theproperfoundationshavenow beenlaid down,on whichto build

anextensionof thesingleton-compositepictureto non-Abeliangaugetheories.

2. SINGLETON GAUGETHEORY

Thefreefield of (Bose)singletongaugetheoryisa scalarfield thatsatisfiesthedipole
equation[8]

(2.1) (o_ 5)2 ~ = 0.

Thesecondorderdifferentialoperator0 is thed’Alembertianconstructedfrom the

deSittermetric, and theequationis invariantunderthenaturalactionof SO(3,2) on
thede Sitter hyperboloid(moreprecisely: its doublecovering). In particular, theLie
algebraso(3,2) actson the spaceof solutionswith positiveenergyandfinite angular
momentum;this action is an indecomposablerepresentationwith thefollowing Gupta-

Bleulertripletstructure

(2.2) D(5/2,O)—~D(1/2,O)-.-~D(5/2,0).

Sinceeachcomponentis irreducible,thereare preciselytwo proper,invariantsub-

spaces.Thelargersubspaceis definedby the Lorentzcondition

(2.3) (o_ ~-~) ~(x) = 0

andcarriesthesubrepresentationD( 1/2, 0) —* D(5/2 , 0) . Thesmallerinvariantsub-
spacecarriesonly D( 5/2 , 0) and consistsof gaugemodes.The quotientD( 1/2 , 0)

is thespaceof physicalstates.
TheLagrangianassociatedwithEq. (2.1) mustbeconstructedwith carefulattention

to surfacetermsarisingfrom integrationby parts,sincethesolutionsfall off veryslowly
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at infinity. Is is (with u = —Sp/4)

£[q5,b] = fd4x(_g)~ (g ~~b~_u~b+ ~.-bb)+

(2.4)

+ ~fd4z~g)f (~~+ ~

The field b plays the roleof the Nakanishi-Lautrupfield of this gaugetheory. A

BRSTextensionis effectedby adding[9]

(2.5) £[c,d] = fd4z(_g)~(_g~c~d~+ucd)

where c and d aretheFadde‘ev-Popovghostand antighostfields. TheBRST transfor-
mation,underwhich thetotalLagrangianis invariant,is

(2.6) 6q5 = c, c5c = 0, 6d = b, 6b = 0.

The<<physical>>subspaceisdefinedby b k~ >= 0. Onthis subspacethe Lagrangianas
well astheHamiltonianreduceto surfaceintegralsoverspatial infinity; this isno longer

trueafterwe introduceinteractionsand adoptourunconventionalquantization.
In vectorgaugetheoriesthe subspaceof gaugemodesis definedlocally, asthespace

of exactvectorfields. In singletongaugetheorythesituationis very different,and this
is a key point; all interpretationand all applicationsdependon it. Thephysicalmodes
aredistinguishedfrom the gaugemodesnonlocally,by boundaryconditionsat spatial
infinity [4]. The field isthereforenot a local observable,and this centralfeatureisboth

a limitation and an opportunity. An importantlimitation is that any gaugeinvariant
interactionis necessarilynonlocal (or<<topological>>);for example,of thetype

fj~~(x)di

wherethecurrentis conserved.In a classicalfield theorysuchinteractionsaretrivializ-

ableandthusof very limited interest,but in quantumfield theorythis is notnecessarily

thecase,as will now beshown.
Considertheexampleof the interaction

(2.7) f~P(z)(a~)~(x)di

with a Dirac field ~i. The Dirac equation

(~—im)~ —(~)~
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maybesolvediteratively, ~1,= + + +

(~— im)i,b
0 = 0,

~ n0,l

Thesolution upto

= —çb(z)~0(z)

~P2(x) 1~2~~()

~ di’.

In quantumfield theorythe interactionLagrangian(2.7)needsto beregularized,one

replacesit by thenormal orderedproduct

(2.8) f :~(z)(~)~(x):di.

Thedefinitionofnormalorderingdependsonthechoiceof quantization,butis always

carriedout on freefields. Theaboveexpressionmakessensein perturbationtheory,the
interpolating fields beingexpressedin termsof freefields. Our iteration schememust
now becarefullyre-examined:

(~—im)~0(z)=0,

- im)~1(z)= — (~/~(z))f : ~(x’)( ~)~(x’): dz’I~=

= — f : ~(z— x’) ( Ø~)~o(x’): d i’ =

{~(X)}~’O(Z)

= : (0— im){~(z)~0(x)}:.

Herewe meetwith a difficulty that we regardas a minorone,thoughweshall not

endeavorto resolveit. Wearedealingwith atheorywith interactionsthatinvolve deriva-
tives. Oneknows that relativistic invarianceis theresultof cancellationsbetweenvar-
iousquantitiesof doubtful signifiance. Oneknows also that the correctresults canbe

obtained(in the frameworkof ordinaryquantization)by naiveapplicationof Feynman



42 M. FLATO, C.FRONDSAL

rules. This amountsto the useof a modified timeordering(T*.product), thathas the

propertyof commutingwith spaceandtimedifferentiation.We feeljustified, therefore,
in expectingthatthecorrectresultis obtainedhereby movingthefactor ~ — im outof
theembraceof thenormalordering.Thus ~ = ~ . Next,

(0—im)~2(x)= — (5/~(x)) f : ~(x’)(~)~(z’): dx’I~ =

{~(x)}~(x)~~(x):=

=~(:(~_im)~2(x)~0(x):—

=(0—im): 1~2~~() : +

+:

In conventionalfield theorythesecondexpressionvanishes,and thecompleteitera-

tion leadsto

~(z) =

That is, the interaction is trivialized (removed) by a local field transformation.
Thoughthecalculationis formal, it probablymakessensein perturbationtheory.

Sincewewanttheinteractionto benontrivial,wemustlook foralternativequantiza-
tionschemes.Thefactthatthesingletonfield operatorisnot locallyobservableprovides

theopportunityto circumventthelimitationsthatare imposedon conventionalfield the-
oriesby microcausality.

The aboveformalcalculationssuggestthat it maybepossibleto interpret

(2.9) : [q~(z),ô,~(z)]:

(suitablydefined)as theelectromagneticpotential quantumfield operator.Unlike ear-
lier attemptsin this direction [10], our suggestiondoesnot dependfor its plausibility

on unverifiablehypothesesinvolvingnon-perturbativeorothermysticalconsiderations.
Quite on the contrary: we wantthe relationshipbetween~(x) and A,~(x)to hold
evenfor freefields. Whatmakessuchaconnectionnatural,and this only in the context

ofsingletonfield theory,is thekinematicalfactthatall two-singletonstatesaremassless.
The amazingfactthat all statesof two free singletonsaremasslesswas noticedlong

ago[1]. With ordinaryBose-Einsteinquantizationit seemednaturalto interpretphotons
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as statesof two singletons,but it wasdifficult to understandhow such<<bound>>states
with vanishingbindingenergycould acquireordinaryBose-Einsteinstatisticalproper-
ties. Thissituationis at oncealteredif theexpression(2.9) is interpretedastheelectro-
magneticpotential; in fact, it will be shownthat conventionalstatisticsfor photonsis

rigorously obtainable.We shallgive up Bose-Einsteinquantizationfor singletonsand,

with it, therestrictionto symmetricstates.Antisymmetricstates,suchasthosecreated
from thevacuumby theoperator(2.9), areoutsideandorthogonalto this subspace,and
thesenewstatesareinterpretedasphotons.

Ourprogram,therefore,is to quantizesingletonfield theoryaccordingto newprin-
ciplesthat allow for additional, antisymmetrictwo-particlestates,in sucha way as to
maketheseadditionalexcitationsbehavelike ordinaryphotons. Weshallrecall how it
was first shown[6] that this is actuallyfeasible;thenweshalldiscusssomeshortcomings

of that first scheme.

3. QUANTIZATION, PRELIMINARIES

Let usdecomposethesingletonfield operator,

(3.1) 4~(x)r~j’(x)a~+h.c.,

in termsofpositiveenergycreationoperatorsa*j andannihilationoperators a5 , without
yetmakinganyassumptionsabouttheircommutationrelations.Let 0) designateanon
degeneratevacuumstate,

a5 0) = 0,

andconsiderthespacespannedby

(3.2) a*ja*ka*t... 10).

The symmetricstates

S(a*Ja*k...)I0)

will beinterpretedasmulti-singletonstates;thenew states

[a*1,a*kJIO)

asone-photonstates.This isjustifiedas follows. The states a*)10) carry the singleton
representationshowninEq. (2.2);thestatesa*J a*~c0) carrythedirectproduct(2 .2)®
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(2 .2) . Weknow alsothat thedirectsecondpowerof thephysicalquotientD( 1/2 , 0)
containsonly masslessrepresentations[1]. Finally, wealso knowthat the skewpartof
(2.2)®(2.2) containsthefull Gupta-BleulertripletD(3,0) —~ D(2, 1) —* D(3,0)

of deSitterelectrodynamics[11]. This impliestheexistenceof abasisof positiveenergy
photoncreationoperatorsb~andannihilation operatorsb0, togetherwith complex

coefficients C,~. suchthat

(3.3) [aj,ak] = iC7kbQ, [a*J,a*k] = 2C)kb.

The grouptheoreticalanalysisassuresus that thecoefficientscanbe sochosenthat

thestatesb~’10) havetheappropriatekinematicalpropertiesthatallow themto beinter-
pretedasphotons,butthestatisticalpropertiesof thesephotonsdependon commutation

relationsthat remainunspecifiedsofar.
We hadassumed,provisionally,in orderto explorethesimplestpossibilityfirst, that

(3.4) [a5,b~]= 0, [ba,b,3]= 0.

Thiswould ensurethatthe states

b~~~b*P...S(a*5a*k...)l0)

form abasisfor thegeneralizedPockspacespannedby thestates(3.2). In this senseour
generalizedFock spacelooks like an ordinaryFock spacewith two kindsof particles,
buttwo crucialquestionsneedto beanswered.Weneedto knowwhathappenswhen am

is appliedto (3.2); is our generalizedFock spaceinvariantunderthe actionof ~(z)?
Onemustalso enquireinto thestructureof thecommutatorbetween b0 and b*fi; can

theusualrelation

(3.5) [ba,b*$] =

beachieved?
To thedemonstratethat the structure(3.3,4, 5) actuallyexists,let ~, ‘ä~be a set

of conventional,canonicalsingletonannihilationand creationoperators,andlet b,~,b*/I

bea set of ordinaryphotonoperators.In particular,this impliesthat

= ~5k [b~,b*fl] =

Supposethat the spaceof one-photonstatescarriestheGupta-Bleulertriplet repre-

sentation

(3.6) D(3,0) —‘D(2,l) —D(3,0)
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of so(3,2); thenweknow thatthereexistClebsch-Gordancoefficients thatinter-
twinethis representationwith theproductof (2.2) with itself. Nowlet

(3.7) a*J ~*J+

then Eqs. (3.3, 4) are satisfied. With this realizationof the structure(3.3, 4, 5) the
generalizedFockspacespannedby thestates(3.2) is invariantundertheaction of am

andthusundertheaction of çô(z).

We are thusentitledto postulatethestructuregivenby (3.3, 4, 5) and returnto the
proposedinterpretationof (2.9) suitablydefined,astheelectromagneticpotential,in the

caseof free fields. Now if

(3.8) A~(x) ~-{: ~ : — : ô~(x)~(x):},

wherethe colons indicatea regularizedproduct,so definedthat the crossterms a~a*k

in thetwo productscanceleachother,then

A~(x)=>A~(z)b~+h.c.,

1 k

A~(x)= ~-~‘(z)ô~ (z)C,k.
This resultdoesindeedjustify the interpretationof (3.8). The effectiveinteraction

arisingfrom f ~(~) ~ is f ~~ and anargumentbasedonDyson’sformulafor the

S-matrix in termsof freefields leadstotheconclusionthatthetheoryreduceseffectively
to QED [6]. However, thisconstructionis incompletein two respects.

First, theregularizedproductin (3.8) wasnotyet fully defined.In conventionalfield

theorynormal orderingdoesindeedleadto cancellationbetweenthecrossterms
in (3.8),leavingtheothertermsunaffected(andreducingthe wholeexpressionto zero).
In thenew frameworkwe simply assumedthat <<normalordering>> getsrid of thecross

termswhile leavingall othertermsin the written order. The properdefinitionswill be
givenbelowandconstituteoneof theprincipalresultsof thispaper.

The secondproblemseemsat first sight to be mainlyan aestheticone; it involves
the incorporationof conformal invarianceinto thetheory. The spaceof one-particle
statesof flat spaceQED involvestwo inequivalentirreduciblerepresentationsof the
Poincarégroup,associatedwith thetwo helicities.Thepotential,however,isconstructed

in termsof asingleindecomposableGupta-Bleulertriplet. Conformalelectrodynamics,
in flat spaceaswell asin de Sitterspace,is describedby thefollowing indecomposable

so(4, 2) Gupta-Bleulertriplet [12]:

(3.9) D(1,l/2,l/2)—~{D(2,l,0)~D(2,0,l)~Id}—-~D(1,l/2,1/2).
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Reductionwith respectto the de Sittersubalgebrareveals [13] two inequivalent
so(3, 2) triplets,namely

(3.6) D(3,0) —+D(2,l) —~D(3,0)

(3.10) D(1,l)—~{D(2,l)~Id}-—+D(l,l).

Thefactthattwo copiesof thephysicalrepresentationD( 2, 1) appear,corresponds
to thetwo helicities in flat spacebut, unlike thesituationin Minkowski space,they are
notmixed up in thesametriplet. This gives riseto an optionin de Sitter spacethat is

notavailablein flat space:onecanconstructa potentialwith the aid ofjustone (either
one)of thetwo triplets,ratherthanusingbothof them.Theprice to payfor this would

belossof conformal invariance.

Now anapparentconflict betweenour constructionof electrodynamicson the one
hand,and conformalinvarianceon theotherhand,seemsto ariseas follows. The kine-

maticalbasis for associatingtwo singletonswith onephotonis that D(2, I) appears
asa subrepresentationof thedirectproduct D( 1/2,0) ® D( 1/2 , 0) . But field theory

hasto takethe gaugestructureand the wholeGupta-Bleulertripletsinto account.The
uniquesingletontriplet is shown in Eq. (2.2); we usedthe fact that (3.6) appearsasa

summandin thereductionof theproductof (2.2) with itself. The sameis evidentlynot
true of (3.10);this triplet doesnot appearin thedirect productof two singletontriplets.
Thus it would seemthatour theoryselectstheoption referredto above,availableonly
in deSitterspace,andthatconformalinvarianceis thuslost. Weshall seethat this is in

factnota valid conclusion.

4. SINGLETON QUANTIZATION ALGEBRA

Conformalinvariancemayseemlike a secondaryconsideration,welcomeif thecost
is nottoohigh,butperhapsnot very fundamental.We shallsee,however,that whenwe
insistontheinclusionin QEDof bothtriplets, (3.6) and (3.10),then weare rewardedby

beingled to a verysatisfactorysolutionof the otherproblemdiscussedin Section3, in
connectionwith thedefinitionof normal ordering.

Thekey point is thatthesecondtripletcannotbeaccountedfor by thestatescreated
from the vacuumby theoperators [a*J,~*k] ; but [a., a*k] canproducethesecond

triplet. [Both statementsneeda good dealof explanation,for weare not dealingwith
unitaryrepresentations;pleaseseeAppendix]. Oneis thus led to associatingnewexci-
tationswith bothof theseoperators

(4.1) [a,,ak] = ~C7jcb~,,[aj,a*k] = iC~b’~,

suchthat(the linearspanof) b~carries(3.6) and b’~,carries(3.10)plus its contragre-
dient. Onehopesthat the photonoperatorsbe,,b~and b~obeyconventionalBose-
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Einsteincommutationrelationsand that theycommutewith thesingletonoperatorsa5.

Thesedesideratacanessentiallybesatisfied.
Let us write a_5 for a*J, 5 = 1,2,... and let the indices 5, k,... run overboth

positiveand negativeintegers.Define operatorsb,~asthecommutator [a5,ak] . We
observethat theymay beviewedas constitutinganoperatorvaluedgeneralizationof

the sympleticform that characterizesBose-Einsteinquantization;photonsanimatethe
originally rigid symplecticform just asgravitonsgivedynamicallife tothemetrictensor
ingeneralrelativity. Wewantphotonsto beBose-Einsteinquanta,sowerequirethatthe
commutator [b)k, birn] be a numericaltensor(numericalmultiple of theunit operator).
Thistensorcanbe interpretedas a C-valued symplecticform, exceptthat (asa two-

form) it maybe degenerate.The spectrumof photonsis determinedby the co-kernel,
so we must insist that the choiceof this form remainour privilege. To completethe

algebraicstructurewemustalsospecifythecommutator[a3, b~1] ; evidentlyit cannot
vanishasthis would imply that the b ‘s commute,by theJacobiidentity. Weshallnow
demonstrate,by directconstruction,that thereexistsa structurethat incorporatesall our

desiderataandthat is freeof internalcontradictions.
Let (a1,~1), = ±1,±2,... be aset of conventionalcanonicaloperators,with

[Zj,Zt] = 0= [z,z},

[z5,~] =

andlet (B5~), 5, k = ±1, ±2,... begeneratorsof a Heisenbergalgebra,commuting

with z1 and~

rn 1.....A.....rD(4.2) [Bjk,L;’imJ — Ejk,Im, ~~~)jk,ZZJ — ~J—

inwhich c is numerical.Thoughwe call the B5~thegeneratorsof a Heisenbergalge-

bra,we do notmeanto imply that thetwo-form r is non-degenerate.In this regard
we reserveour options,aboutwhich morebelow. Weusetheseoperatorsto construct
singletonoperators,

(4.3)

Thisformuladiffers fromEq. (3.7) in the following respect.Theoperators(i), j =

1,2,... in (3.7) areassociatedwithalinearrepresentationof so(3,2) thatisequivalent
to apositiveenergysingletontriplet(2.2), while the linearspacespannedby (z,), 5 =

±1, ±2,... carriesthesingletontripletplus its negativeenergycontragredient.The W
transformcontragredientiyanddefinea basisthatis dual tothatdefinedby the a5 . This
impliesthatthe B)k transformlike a5at. Thedifficulties associatedwith Eq. (3.7) are

hereavoidedbecauseall the commutewith eachother (whereas ~, and =
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do not). Wehavedoubledthespaceof building blocks,without increasingthenumber

of relevantoperators.

The operatorsBk are takento commutewith the a ‘s. Directcalculationnow gives

(4.4) [aJ,akJ = B~1— B1~+ ~mCj1,km w~+ b1~.

Theoperatorvaluedform definedby thecommutatormayberegardedasarisingfrom
anordinarysymplecticform by deformation.To makethis explicit wehavedefined
asthedifference[a5,at]—w1~,wherew istheoriginal,c-numbersymplecticformthat

characterizesthe singletontriplet. To justify the inclusionof thenumericalterm

wehavetosupposethatsomeof the B,.k arenumerical.Thisis not incontradictionwith
(4.2), andit is oneof the reasonswhy weneededto preserveour optionswith regardto

thechoiceof e.

With this definitionwefind

(4.5) [blk, bim] = (5t,im — (5, k)) — (1, m) fjttm

The b,.~will be interpretedas photonoperatorsand the symplecticform f will

thereforebegivena priori. Forthis reasonit is necessaryto verify that onecanalways
find an s thatsolvesthelastequation.In fact, a solutionis

= (f~~~m— (k,m)) + (j,1).

With this choiceof e theterm ~I~E in (4.4) vanishes.

We completethealgebraicstructureby evaluating

(4.6) [a1,b~1I= {Etjim +
6jmlk — (k, 1) ~

The commutatoralgebrageneratedby the singletonoperatorsa
3 canthereforebe

madeto closeafter the inclusionof b,~and W. The completestructureis

[aj,at] = + b1~, [aj,~k] =

(4.7) [a3,att] = ~jkLmZ~ [b1~,~1]= 0,

[b/k, ~im~ = fjt,im’ ~ = 0.

Thisalgebracharacterizessingletonquantizationjust astheHeisenbergalgebrais the

basisfor Bose-Einsteinquantization.
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5. FOCK SPACE

If we wantto be quite precise,then wemustpointout that (4.7) is not anabstract
Lie algebra,becauseof the appearance,in threeplaces,of theunitoperator.To get an
abstractalgebrawemustintroducethreenew centralelementsand replacethe 1st, 2nd

and5thequationby

[aj,ak] = ~~1kei+ b)k, [a5,~] =
(4.7’)

[b/k, bim] = fjk,lme3.

However,we shall limit ourselvesto representationsin which e1 , e2 and e3 are
representedby theunit operator.

The next step is to choosea realizationof the algebra(4.7). As always, themain
physicalinput is the requirementof positivity of the energy. Recall that a*j =

for 5 > 0 increasesthe energy(sincethesingletontriplet is a strictly positiveenergy
representation)and that a5(5 > 0) decreasesit. The operators z5 carry the same
representationas the a5 (the directsumof the singletontriplet and its contragredient)
and the z~

1carrythe contragredient.Wethereforerequirea uniquevacuumsuchthat

a,I0)=O and~’I0)=0 forj=l,2 Wealsofixeilo)=e
210)=e3jO)=

0).
The operatorsblk for .j, k > 0 havenegativeenergyandthereforealsoannihilate

thevacuum.The b,~for 5,k of oppositesignarephotoncreationanddestructionoper-
atorsassociatedwith thesecondGupta-Bleulertriplet (3.10) andits contragredient.The
energyin (3.10) is notstrictly positive, becauseof thepresenceof theone-dimensional

subspacewith zero energy.But this is quite irrelevant for our immediatepurpose;the
operatorsthat createphotonsin (3.10)will thereforebe calledpositiveenergyoperators

andtheannihilationoperatorswill be referredto ashavingnegativeenergy.
With this understandingwecompleteourdefinitionof thevacuumby requiringthat all

thenegativeenergyoperators(amongthe a,,b,~, W ) annihilateit, andthat e~10) = 10)
for a = 1,2,3. [The a5 do not belongto the algebra,but are definedwithin the
envelopingalgebraby Eq. (4.3); it thenfollows that z,~0)= 0 for j > 0].

The energyloweringoperators(annihilationoperators),togetherwith thecentralel-
ements e1,e2,e3 , form anilpotentsubalgebra13 of (4.7) [modifiedas in (4.7’)]. Our
Fockspacerepresentationis thus inducedfrom the unique one-dimensionalrepresen-

tation ir0 of this subalgebra,with character~ (e0) = 1, a = 1,2 , 3 . This Pock

spaceisgeneratedby applyingtheoperatorsa5 to thevacuum,theoperatorsb,~being
expressedin termsof the a5 by (4.4). We cannot(unlesswe want to drop the second

triplet) generateFock spaceby using cz, ‘s with positiveenergyonly, since a5at , with
at increasingtheenergyand a3 loweringit, would thenhavebeenleft out. As for the

theyappearonly in the combination(4.6). In otherwords,Fockspaceis thedirect
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product

U[a,]®V0,

where U[ a3] is thefreealgebrageneratedby the a3 ‘s,modulothecommutationrela-
tions, 13 is thenilpotentalgebradefinedabove,and V0 is theone-dimensionalvacuum

spaceon which ir0 acts.
An involutiveanti-automorphismof (4.7) is definedby * : a5 —~ a*j = ~ An

(indefinite) innerproductmay beintroducedon Pock spacein theusual way, making *

theformal adjoint.

6. FIELD COMMUTATORS

Let us now examinethe free field commutators. We have

çb(x) =
= ~q55(z)qSk(y)[a. at] =

(6.1)
= ~cb~(x)~(y)(~,ist+ b,~).

Only theconventional, c-numberterm — involving t4i — preventsthis from being
well definedin thelimit x -.-. y. Wethereforeintroducea <<normal ordering>> precisely

asin Bose-Einsteinfield theory.
Let Q beanypolynomialin the a5, bI~,W . Thereis a uniquedecomposition

(6.2) Q = ~P~PbC[w,f],

in which the P0 are symmetricpolynomials in thepositiveenergyoperatorsandthe

coefficients Cob arepolynomialsin thecomponentsof thesymplecticforms w and f.

A polynomialof thistype,butwith coefficientsthat are independentof w and f, is
calledanormalorderedpolynomial. In particular,

(6.3) : Q := >~PP6C[0,0]

is saidto bethenormalorderedpolynomialthatcorrespondsto Q. Wedefinea product
onthespaceof normalorderedpolynomialsby

(:P :,: Q:) —b: (:P :)(: Q:) :=: PQ:.
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Thisalgebraof normalproductsis isomorphicto theenvelopingalgebraof thecon-

tractedLie algebra

[a,,a~J = b/k, [aj,~k] =

(6.4) [a,,btt] = 0, [b1~,~1]= 0,

[bjt,bim] = 0, [~‘j’~ic]

which is a contractionof (4.6),butnotAbelian.
In particular,weshallbeconcernedwith thenormalorderedcommutator

:=
j,k

andespecially

[~(z),8,~(z)] :=

) ,k

Thislastcanevidently beidentified with thefreeelectromagneticpotential. If (ba)

is abasisfor thephotonoperators,and

—

LI/k —

then

[~(z),~(x)] := A~(x) =

(6.5)
A~(z) =

Besidesthis result,weshallneed

[q~(z),A~(z)]:= > ~s(z)~k(z)a~L(x) : [a5, b~~]:= 0
(6.6) ski

[A~(x),A~(y)] : 0.

7. COMPOSITE QED

We now return to the interaction (2.8) and theexpressionfor ~2:

~2(X) 1~2~~()

— f SF(x, x’) : ~[~(z’), ~(x’)] : ~(x’) dx’.
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This stronglysuggestsidentifying

/2i

with the electromagneticfield, up to secondorderof perturbationtheory. To find the
completeexpressionfor A,~(a) we shalllook attheproblem from a slightly different

angle.

The startingpoint is theLagrangian

(7.1) fda :~(x)(~D~—im)~(x):.

The primitive connectionis

= —

Triviality of the interactionin the caseof ordinaryquantizationcan be <<demon-
strated>>by carryingout a field transformation

~(x) = e~~Y(x).

The effectof this field transformationon theLagrangianis to convert(7.1) to

(7.2) fda : ~‘(a)(~D~ — im)~’(a) :,

(7.3) =: e~’~(3~— a~~)e_~(x)

With Bose-Einsteinquantizationoneobtains D,~= ~ In generalit is an infinite

series

= ~+ : [~,5~] : +~ : [~,[~,&~]] : + ... + A~(x).

WehaveaninteractionLagrangianthatlookslike that of electrodynamics.It involves

electronfieldsandthevectorfield A,~. Insteadof the freeMaxwellLagrangianwe have
the singletonLagrangian£~, with gaugefixing and ghosts. (Elsewhere[9] we have

verified thatthe BRST structureof singletongaugetheoryinducestheBRST structure

of theelectromagneticpotential).To determinewhetherthis theoryincludesQED, we
haveto investigatethepropertiesof as a quantumfield operator.Moreprecisely,to

calculatethe S-matrix,wehaveto examinetheasymptoticpropertiesanddeducefrom
themthe freepropagator.This, togetherwith the form of interaction,which weknow
already,will fix the S-matrix.
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The asymptotic properties of A~are determinedby thoseof ~ we assumethat 4
tendsto a freefield. In that casethe expressionfor A~simplifies, for all the normal
orderedcommutatorsvanish, with the sole exceptionof the first one. This remaining

term is preciselythefree electromagneticpotential, as wehaveseenin thepreceding
sections.In particular,the two-point functionandthepropagatorarepreciselythoseof
de Sitter QED. It would be tempting, therefore,to concludethat our theory, with the
Lagrangian(7.1),containsde Sitterelectrodynamics,with someadditionalinteractions

at infinity.
Interactionsat infinity are not always completelynegligible; we havein mind the

situationin QCD, where work of ‘t Hoofthasshown therelevanceof surfaceterms for
CPviolation and the U( 1) problem[14]. There,the surfaceterms becomerelevant

becauseof theexistenceof an anomaly. Wecannotbe sure,on the basisof what has
beendoneso far, that our theoryis anomalyfree. In view of the factthat CPviolationis
latentin it, as weshallexplain later, it is of specialinterestto investigatethepossibility

thatanomaliesmay also bepresent.Wedo notcarryout sucha studyin this paper,but
weshall at leastmakea preliminaryinvestigationof the S-matrix.

It is not immediatelyobviousthat Dyson’sformula,

(7.5) 5 = T*exp if : ~(a)~~(x): d4x,

for theperturbativeS-matrix in termsof freefield, is valid in the frameworkof a field

theorywith non-standardquantizationrules. To provethat it is, we first determinethe
freeHamiltonian,or rather,thecontributionH

0 thatcomesfrom thesingletonfield. We

supposethat the basis {z1} is so chosenthat eachoperatorcreatesan eigenstateof the
freeenergyfrom thevacuum;that is, each a1 is a creationoperatoror anannihilation

operatorfor thefreeHamiltonian.The entireFock spacecanbegeneratedby applying
z ‘s and ~ ‘s and B ‘s to thevacuum.SincetheseoperatorsgenerateaHeisenbergalge-
bra,it is obviousthat H0 is theusual sumof bilinears,with coefficientsthat arejustthe
associatedvaluesof the so(3,2) energyoperator.Nothingpreventsusfrom expressing

H0 this way, since a1 canbe consideredasa convenientabbreviationfor a1 — B~J~
5.

It is now obviousthat [H
0,a~] = w~a,., where w1 is the eigenvalueof the so(3,2)

energyoperatorassociatedwith a,. Therefore, [ill0, ~(a)] is thetime derivativeof
thefree field ~, with thetime dependencedeterminedby the classicalfield equation.
SinceH0 , expressedin termsofthe a ‘s andthe B ‘s, hastheusualharmonicoscillator

form, thefree quantumfield evolvesaccordingto the sameequationsof motion as the
classicalfield. This iswhatisresponsiblefor thefactthatthe interactionHamiltonian,in
the interactionrepresentation,has thesameform asthe interactionLagrangian,and this

justifiesDyson’sformulain thepresentcase.Wearethereforesureof (7.5),andrewrite
it as

s~tT[f:~(a) ~a): dx].
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Let usnowrecalltheargumentthatwasmeantto showthatthiscontainsthe S-matrix

of deSitterQED.
Thepropertiesof theelectronfields areentirelyconventional,sowecanapplyWick’s

theoremtothesefactors,andconsiderseparatelyeachterm. If, in anyoneof the factors

f : ~(x) ~(x): dx,

neither ~ nor ~ is contracted,then both are replacedby free field wave functions,
and thenanintegrationby partsshowsthat thematrix elementvanishes(exceptfor the
possibilityof an interactionat infinity). Consequently,everyfactormustappearwith at
leastonecontraction,asin

~(x)dx f~(x’) ~~(x’)da’=

= f ~(x){~(x))SF(x, a’){~(x’) }~(x’)dada’.

Integrationby partsgives

dx.

A similar termarisesfrom contracting~(a) with ~(a’) , andcombiningthesetwo

termsweget

~(x)]~(x)dx

From this we concludedthat 2 n factorsof the interactioncombinein pairsto give

preciselythetermsof order n in the S-matrix of QED. Let us now discusstheweak

pointsin this argument.
1. Actually, thetwo factors ~ and ~ appearinsidetheembraceof the ordering

prescriptionT*. This is notoriouslyambiguous,evenin ordinaryfield theory, when-

everpointscoincide. We note that the commutatorappearsevenin conventionalfield
theory, whereit reducesto an infinite c-number.This meaninglessquantityis always

ignored,andthisis oneof thewaysin which ordinaryfield theoryis regularized.The T*
productis thesumof a contractedcommutator(whichis dropped)and anormalordered
commutator.Thelatteriszeroin ordinaryfield theorybutnot in theonebeingdiscussed.
Theconclusionis that thereductionof the singletonS-matrix to thatof QEDneedsto

becompletedby regularization,which might possiblyuncovera non-trivial correction,
of thenatureof ananomaly.
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2. In the original version of this theory it had beenassumedthat çb(x) commute

with A,~(x) . Hereit hasbeenseenthat this isnotcompletelycorrect,since : [a,, b~1]
is notzero butalinearcombinationof thegostoperators~. One therefore has to worry

abouta possiblecontributionof thetype

[~(x),[~(x),~q~(x)]] E(I)(x).

(Thenormal orderedpartof this vanishes).This free field islinearin the ~ ‘s, which

arespinless,thereforeit is a gradient.A gradientcorrectionto A,~normally makesno
contributionto the S-matrix,but onemayfear an effect herebecausec1 is in most
respectssimilar to thesingletonfield çi~’.Butthecommutators[(1, ~I)] and [(I), ØqS]

bothvanish, so in fact this gradientdoesnot makeany contributionsto the S-matrix.
(A quitesimilar considerationshowsthat freesingletonspresentin the initial statedo
notscatterfrom electronsor from photons).

To summarize:Wheninteractionsat infinity are setaside,and if no surpriseappears

duringtheprocessof regularization,then our singleton S-matrix reducesto thatof de
SitterQED. Let usadd thatwehopethat regularizationwill revealananomaly; here is
why.

The basicinteractionis a couplingof to theelectromagneticcurrent. Forthis
to be CPinvariant, we must take ~ to be CPodd. But then A~becomesCPeven,

andinvarianceis lost. Of course,if the fundamentalinteractionhadno physicalmani-
festationsotherthanelectromagnetic,theno CF violationwould beobserved.But any
physical implicationscoming from the self-interactionsof singletonsat infinity (such

interactionswerefirst discussedinRef. 15) couldresultin observableCPviolation. The
termin theLagrangianthat containstheseinteractionsis asurfaceterm(a<<topological>>
term),which remindsus of the 0-term discoveredby ‘t Hooft [14] in QCD.It isdifficult

to understandhow suchinteractionscanbeobserved,but it appearsthat ananomalycan
havenothadmuchsuccessin thepast. It is to behopedthat, if it occurshere, thenit
will bein highenoughorder,soas to beseenonly invery accuratemeasurements,such

as maybepossibleonly via observationof the K, K system).
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APPENDIX A

The physicalphotonrepresentationsof the Foincardgroup,with the two helicities
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±1, bothhaveuniqueextensionsto the conformal group [16]. Thesein turn remain
irreduciblewhenrestrictedto so(3 , 2) , the restrictionbeing D(2,1) in eachcase.
Thus, in de Sitter space,insteadof two inequivalentrepresentationscorrespondingto

thetwo helicities, photonscarry two copiesof one and the sameunitary, irreducible

representation.
In field theorythingsaremorecomplicated,for thephysicalstatesarenotassociated

with fields butinsteadwith equivalenceclassesof fields. Thusthe following nondecom-
posablerepresentationof theconformalgroup is encountered

{D(2,l,0)sD(2,0,1)}—*D(l,l/2,l/2),

whereD( 1, 1/2, 1/2) is associatedwith thegaugemodes.Whenthis representationis
restrictedto so(3 2) we find thetwo copiesof D(2, 1) , butnow eachonecomeswith
adifferentsetof gaugemodes.Wenolongerhavetwo copiesof thesamerepresentation.

Finally, quantizationneedsscalarmodesas well, and theminimal representationof the

conformalgroupthat has the requisitesymplecticstructureis (3.9). Its reductionon
so(3,2) is

(3.9)I~~(3,2)= (3.6) ~(3.l0)~

1,0) ~D( 1,0) ~D(2 , 0) ~D(2 , 0)

The first two termsare thetwo so(3,2) photontriplets. Thelast four mustbe in-

cludedin a conformallyinvariantquantizationscheme,but they do not contributeany
additionalphysicalstates.It hasbeenknown for atleasttenyears[1] that thesingleton
representationD (1/2 , 0) of so(3 , 2) hasthefollowing remarkableproperty:

(A.l) D(1/2,0)®D(l/2,0) ~ D(s+1,s).
a=O1,...

The summandsare all masslessand include the physical photon representation

D(2, 1). In field theorywe mustextendthis to the Gupta-Bleulertriplets. Now we

claim that

(A.2) (2.2)®(2.2) j(3.6).

[Therepresentationon theright occursas a direct summandin the reductionof the
directproduct]. Oneshouldbe aware,however,that the reductionof tensorproducts

of non-unitaryrepresentationsis not sostraightforwardasin theunitarycase,exempli-
fied by (A.l). The frameworkthat we usehereis that of highestweightHarishChandra
modulesor (g,K) modules,finite linearcombinationsof stateswith fixed energyand
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angular momentum. The left side of (A.2) is algebraically equivalent, as a (g, K) mod-

ule, to a directsumof highestweight (g, K) modules,and the triplet on theright side
is oneof the summands.

Theonly irreducible,highestweight(positiveenergy)(g,K) modulethatcanextend

D( 1/2 , 0) is D( 5/2 , 0), sothe only possiblesingletontriplet is (2.2). Theminimal
energyisthus 1/2 , andtheminimal energyin thedirectsquareis 1. It is thereforeclear
thatthe otherphotontriplet, with minimal energyzero,cannotoccuras summandin the
reductionof the left sideof(A.2). However,weclaim thatthereis asensein which it is

includedin the directproductof (2.2) with its negativeenergycontragradient.But this
takesusoutsidethesafedomainofhighestweightmodules,andsincethefactorsarenot
unitaryno standarddecompositionexists.

If ir1 and ~2 are two finite dimensionalrepresentationsof an algebrain spaces

V1 and V2, and ir~is thecontragradientof ir2, thenthedirect product ir1 ® 7r~is
canonicallyidentifiedwith thespace£(V1,V2) of linearmapsfrom T/~ to V2. This is
notquitetruein thecaseof infinitedimensionalrepresentations.Whenwespeakloosely,

and saythat

(A.3) (2.2) ®(2.2)* D’ (3.10)

what wereally mean is that there is a space L of mappingsof thesingletontripletinto
itself, suchthat thenaturalaction of so(3,2) on L is algebraicallyequivalentto the

existenceof theClebsch-Gordancoefficients C7’~in (4.1). Theproofwill be given in

AppendixC. In AppendixB we explain,muchmoreexplicitly, thesimple casewhen

g= s1(2,R).

APPENDIX B

In theusualCartan-WeylbasisthehighestweightrepresentationD( 1/2) of sl( 2 , R)

is givenby

Basisim), m= 1/2,3/2,...

Him) = mlm)

E~Im)= (m+ 1/2)Im+ I)

E1m) = (m— l/2)Im— 1).

ThecontragredientD( 1/2) is

HI-m)=-mI-m)

E~i—m)=—(m—I/2)I—m+ I)

E1—m) = —(m+ 1/2)1—rn—I).
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In D(1/2) ®D(1/2)* takethebasis m,—n) Im > ®I—n) and consider

~= ~C~,jni,_fl~)

Eb~(rn+ l/2)(Cm_Cm_i)Im+ 1,—rn)

E~b ~(m+ l/2)(Cm+i 6’m)Im,m 1).

Thereis (up to a constantfactor) a uniqueseries

(B.l) = ~ rn, —m)

that is annihilatedby H, E~.
Since D( 1/2)* iscontragradientto D( 1/2), wecaninterpret I — m) asthe linear

functional (rn~ givenby

(mm) = ~mn

Then rn, —n) is the linear map II) —÷ ~ rn) and ~ is the identity operator, in

Dirac‘s notation

~o =~lmXrnl.

Beinginvariant, it gives the trivial representationId of sl( 2 , R). This doesnotmean
that Id appearsas a summandin the unitary reductionof D( 1/2) ® D( I /2)*; this
reductionis a directintegralandcontainsno discretesummands.

Wenow try to find mapsthat transformas the highestweightrepresentationD( 1).
The groundstatemusthaveenergy 1,

(B.2) lh = >~Cimlm+ 1,—rn),

and it mustbeannihilatedby E,

Ei,b1 = ~{C~(m+ 1/2) —C~(m—1/2)}lm,—m) = 0.

This gives C~= 0, so we fail, thereis no spaceof mapsthat transformaccordingto

D( 1). But if we requireinsteadthat

E~b1
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then wearesuccessfulwith

(B.3) C~’=1.

Thismeansthat D( I) isrealized in terms ofequivalenceclassesofmaps,thezero-class
beingthemultiplesofthe identitymap.On themapsthemselveswefind thenondecom-
posablerepresentation

D(l) —~Id.

Thiscanbe expandedto thetriplet

(B.4) Id ~_~{D(I)®D(I)*}~_.1d,

buttheconstructionis left for thereader.
Thereare otherwaysto expressthesefacts. If werealize D( 1/2) by holomorphic

functions(induction),

Im) = am~~l~2,H = ~- + 4-,

+ 20 0
E z+a —, E =—,

Oa Oa

then the identity mapping becomesa function of two variables,

‘1o =~(z~m=(l —z~~

and thecyclic vectorfor (B.4) is

(1 — x)~[1n(I — a) + const.], a = a(.

The questionthat we mustansweris whetherthesecondphotontriplet (3.10) canbe
realizedas a spaceof mapsof thesingletontriplet (2.2) intoitself.

APPENDIX C

We want to prove that there is a spaceof maps on the singletonmodule (2.2) such
that thenaturalactionof so(3,2) on it is equivalentto thesecondtriplet (3.10). Take

threecopiesof thede Sittercone,withcoordinatesu, v,y; u2 = v2 = = 0. Let V
be a spaceof functions u carrying D(5/2 , 0) —~D( 1/2,0) (the gaugesubmodule
vanisheson = 0),V* a spaceof functionsof v carrying the contragredient of
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this representationand W a spaceof one-formsdependingon y thatcarries(3.10).
Weknow that thethreespacesexist and that eachis characterizedby a fixed degreeof

homogeneity,respectively— 1/2, — 1/2, and —1 [9].
Now considerthe invariant<< 3-pointfunction>>

(C.1) v~(v.yY’ (u.v)”
2.

It canbeexpandedinaFourierseriesthatinvolvespositiveenergyfunctionsof u and
y, andnegativeenergyfunctionsof v. [Actually,this expansiondefinesa generalized
functionand gives a precisemeaningto theformal expression(C.l).] Explicit calcula-
tion revealsthat the functionsof u and v carry precisely D(5/2 , 0) —÷ D( 1/2,0)

andits contragradient,respectively.Unfortunately,theone-formsdependingon p carry
not(3.10)butonly thesubmoduleId —~D( 1, 1). Thisprovesthat this latterrepresen-

tationcanberealizedas aspaceof operatorson themodule D( 5/2 , 0) —~D( 1/2 , 0),
which is notwhat we hadhopedto prove.Thefunction (C.I) is theonly invariantfunc-

tion of therequisitedegrees(exceptwecaninterchangeu, v), sothis attemptfails.
Insteadof (C.I) considerthefunction

v~(y . u)(v . ~)~2 (u . v)312.

andexpandas before. This time we find functions of u that carry D(5/2 , 0)

D( 1/2,0), functionsof v thatcarry D(5/2 , 0) andone-formsdependingon p that
carryall of (3.10). Thismeansthat thesecondphotontriplet canberealizedin termsof
mapsfrom D(5/2 , 0) .—~D( 1/2 , 0) to D( 5/2, 0). In otherwords,speakingloosely,
thesecondphotontriplet is containedin D(5/2 , 0) ® (2 .2) ~•

Now it is notdifficult to show,thoughwe leaveout thedemonstrationof it, that the

extensionof thesemethodsfrom thedeSitterconeto thede Sitterhyperboloidgivesthe
followingresult.

PRoPosmoN.Thereexistsa spaceof mapson themodule(2.2),with rangethegauge
submodule,thatcarriesthesecondphotontriplet (3.10).

The meaningof this is that the creationoperatorsfor (3.10) canbe obtainedfrom

[a
1,a*i] (i,j > 0), using a1’s from all of(2.2)but a*) ‘s from just thegaugesubmod-

ule.
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